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ABSTRACT

COVID-19 crisis affects ovarium cancer patients seriously. Thus, it is vital to diagnose ovarium 

cancer, one of the most common types of cancer diagnosed and the causes of death of women 

around the world, at early stages. Herein, 5-(2-phenylbenzo[b]thiophen-3-yl) thiophene-2-

carbaldehyde (PTTC)-based sensor is designed to detect CA-125 more precisely and rapidly 

via electrochemical methods. PTTC, novel benzothiophene derivative, is synthesized by 

electrophilic cyclization reactions and Pd-catalyst coupling reactions. Then, PTTC is dispersed 

homogeneously in Nafion solution, and an ink is obtained. This ink is transferred onto the 

glassy carbon electrode and CA-125 is incubated on this electrode. Cyclic voltammetry (CV), 

differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy 

measurements are employed to determine sensitivity and reliability of CA-125 on PTTC based 

GCE electrode. The effect of CA 125 concentration, incubation time, scan rate studies are 

performed by CV to determine the optimum conditions. Optimum conditions are found as 3 

L PTTC  loading, 5000 ng/mL CA125 antigen concentration and 30 min incubation time. 

Linear range of the PTTC based GCE electrode prepared at optimum conditions are obtained 

by DPV as 1- 100 ng/ml.Limit of detection and limit of quantification values were obtained as 



0.0096 ng/mL and 0.0288 ng/mL, respectively. Interference and artificial serum results reveal 

that this electrode is a promising electrode for CA125 antigen determination for the ovarium 

cancer. PTTC is a novel and unique material for the detection of ovarium cancer antigen CA-

125 and promising for CA-125 antigen detection.
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1. Introduction

Coronavirus, known as the coronavirus pandemic, is continuing its spread across the world, 

with over 42 million confirmed cases in 189 countries and more than 1.15 million 

deaths. During coronavirus spread, cancer patients, their families, and healthcare facilities are 

witnessing unprecedented challenges. Furthermore,  COVID-19 crisis has affected ovarium 

cancer patients care, specifically, in-person office visits, laboratory tests, imaging studies, 

treatments, and surgeries [1-6]. Thus, recently it is vital to diagnose ovarium cancer at early 

stages. Ovarian cancer is one of the most common types of cancer diagnosed and the causes of 

death of women around the world. The most important reason for the high death rate from 

ovarian cancer is the lack of biological markers that provide an early diagnosis of ovarian 

cancer [7-10]. Moreover, the most of cases are late diagnosed due to symptoms of ovarian 

cancer observed late. At the late-stage of ovarian cancer, it becomes incurable in most of the 

cases [11]. Biological markers or tumor markers are biochemical substances rising their 

concentration in the presence of cancer.  Biological markers are produced by the tumor itself, 

or produced by the body in the cases such as inflammation [9]. Tumor markers could be DNA, 

antibody, RNA, peptide, protein structures. Tumor markers can be analyzed in secretions such 

as whole blood, plasma, serum, saliva, urine, feces, and nipple discharge. Tumor markers are 

the most important factor that distinguishes a disease-affected person from a person having the 

disease [12].



Cancer antigen 125 (CA-125) is a biomarker found in ovarian cancer cells and used in the 

diagnosis of ovarian cancer and monitoring the treatment process. CA-125 or Mucin 16 

(MUC16) is a protein found in normal values (0-35 U/mL) in the bloodstream of healthy 

women. The higher than the normal value range (higher than 35 U/ml) of this protein in the 

bloodstream is associated with the progression of ovarian cancer. Therefore, the CA-125 test 

could be used to monitor cancer during and after the treatment of ovarian cancer [13, 14]. 

The determination of CA-125 concentration in the bloodstream is usually performed by the 

ELISA method that is an immunoenzymatic colorimetric method. Electrochemical method is 

due to its low cost, high sensitivity, fast, and time saving to determine and screen the level of 

CA-125 in the bloodstream for early diagnosis of ovarian cancer. Thus, recent years, researches 

concentrated on the electrochemical methods for early diagnosis of ovarian cancer [15-23]. 

LOD, LOQ, and linear range values of various studies compiled from the literature on the 

determination of CA-125 by electrochemical methods are given in Table 1.

Gazze et al. developed a sensor to diagnose CA-125 via deposition of a polyaniline layer with 

electro-polymerization on a screen-printed graphene electrode. Then, it was functionalized 

with the CA-125 antibody via covalent cross-links. Sensor was able to detect CA-125 as low 

as 0.923 ng/L over the dynamic range of 0.92 pg/L-15.2 ng/L [24]. Wu et al. reported the 

results of a sensor consisting of soluble carbon nanofiber, CA-125 antigen, thionine for electron 

transfer, and horseradish peroxidase (HRP). It was found that this sensor had a high sensitivity, 

repeatability, and good stability with 1.8 U/ml detection limit [25]. Hasanzadeh et al. reported 

that a sensor capable of detecting CA-125 was developed by depositing cysteamine-capped 

gold nanoparticles on the surface of reduced graphene oxide (ERGO) probe via electrophoretic 

deposition method. It was stated that this sensor had direct electron transfer capability and 

being a low limit of quantification of 0.1 U/mL [26]. Johari-Ahar et al. reported that modified 

the gold electrode with mercaptopropionic acid (MPS) and then developed a sensor by 



conjugating silica-coated gold nanoparticles (AuNPs@SiO2), CdSe quantum dots (QDs), and 

anti-CA-125 monoclonal antibody, respectively. It was found that this sensor could sensitively 

detect CA-125 with a low detection limit of 0.0016 U/mL and a linear detection range of 0-0.1 

U/mL [27]. Zhang and coworkers reported a detailed review on employment of metal-

organic frameworks (MOFs) which also is a  ultrasensitive and highly selective biosensors for 

detection cancer biomarkers  [28]. Wang and coworkers also worked on two kinds of bimetallic 

TbFe-MOFs and utilized them as a platform for  CA125 detection and as a result proposed 

aptasensor based on Tb-MOF-on-Fe-MOF exhibited great potentials for early 

diagnosis of tumors [29].

Table 1: LOD, LOQ, and Linear range values of electrode materials compiled from literature 
for electrochemical determination of CA 125.

Ovarian cancer 
tumor marker sensor LOD or LOQ Linear range Ref

CA125 MoS2-gold-nanoflowers 0.36 pg/ml 0.01-50 ng/mL [30]

CA125 Gold NP-ZnO nanorods 2.5 ng/L
2.5 ng/L-1 

ng/L
[31]

CA125
FA-HCl-doped polyaniline-

chitosan and Ag-Co3O4 
nanosheets

0.25 pg/mL 0.001-25 ng/ml [32]

CA125 Three dimensional gold 
electrode 1 pg/mL 1 fg/ml-1 g/ml [33]

CA125 Graphene polyaniline 0.923 ng/L
0.92 pg/L-15.2 

ng/L
[24]

CA125 GO-chitosan-PGMA 0.05 ng/mL 0.05-100 ng/mL [34]

CA 125 GCE+Nafion+PTTC 
antibody

0.0096 ng/mL 
(LOD)

0.0288 ng/mL 
ng/mL (LOQ)

0.01-100 ng/mL This 
work

Heteroaromatic compounds such as indoles, pyrazoles, benzothiophenes, and carbazols are of 

great importance in health and in the development of new materials due to their superior 

properties [35-39]. They are used as drugs such as anticancer, antioxidants, antifungal, 

antibacterial, anti-parasites, and in applications such as topoisomerase inhibitors, potassium 

channel openers, and L1210 cell selectors for years [40-47]. Among the heteroaromatic 



structures, benzothiophene derivatives are the best known and are used as pharmaceuticals such 

as raloxifene as used in the treatment of breast cancer and postmenopausal osteoporosis. In 

addition, they have been used as antitumor, antihypertensive, antimicrobial agents [37, 48]. 

Therefore, the synthesis of benzothiophene derivatives and the discovery of new properties are 

of great importance for use in new applications.

Herein, a sensor that can detect CA-125 using a novel benzothiophene derivative has 

developed. PTTC used in sensor was synthesized via electrophilic cyclization reaction and Pd-

catalyst coupling reactions. This sensor was prepared by modification of glassy carbon with 

PTTC as an antibody against CA-125 antigen.

2. Materials and Methods 

Fabrication of the sensor

The glassy carbon electrode was washed with deionized water by glazed with alumina and then 

it was kept in an ultrasonic bath in 1:1 ethanol and deionized water solution. The electrode was 

finally dried in the flow of nitrogen gas. An ink was obtained by dispersing 5 mg of PTTC in 

1 mL of Nafion; and 3 l from this ink was transferred on modified-GCE and dried at room 

temperature. Subsequently, distinct concentrations among 1-50000 ng/ml CA-125 antigens 

were incubated onto modified-GCE at room temperature for 10-70 minutes.

Electrochemical measurements

Electrochemical measurements for the produced sensor were taken via CV, EIS, and DPV. CV 

measurements were obtained on produced sensor electrodes at room temperature in PBS (pH: 

7.4) + 5 mM Fe(CN)6
3-/4- solution (Scan rate = 50 mV s-1) at 5000 ng/ml CA-125 antigen 

concentration for GCE, Nafion + GCE, Nafion + PTTC + GCE, Nafion + PTTC + CA-125 + 

GCE. After the sensor was designed, the surface of electrodes was exposed to distinct 

concentrations of CA-125 antigen varying among 1-50000 ng/ml. Furthermore, to examine the 



impact of CA-125 antigen concentration on the surface of electrode, CV measurements were 

performed at room temperature in PBS (pH: 7.4) + 5 mM Fe(CN)6
3-/4- solution (scan rate = 50 

mV s-1). The best CA-125 antigen concentration range was found as 5000 ng/ml and 

subsequently, the incubation time on the electrode of the CA-125 antigen was researched at 

differing times between 10-70 min. To investigate the impact of scan rate on CA-125 antigen 

in the sensor, CV measurements at different scan rates ranging from 5-1000 mV s-1 on the 

incubated electrode with 5000 ng/ml CA-125 antigen were received in PBS (pH: 7.4) + 5 mM 

Fe(CN)6
3-/4- solution. In addition, DPV measurements were received on sensor electrode 

prepared by incubating 5000 ng/ml CA-125 antigen. The sensitivity of the sensor was estimated 

from the slope of the calibration plot of the DPV curves obtained by drawing the concentration 

values against the maximum current.

In order to determine the electrooxidation process of the CA-125 antigen in the sensor, EIS 

measurements at varying potentials were taken on the sensor produced with 3 ml PTTC + 5000 

ng/ml CA-125 antigen incubated for 30 minutes.

For the interference measurements of sensor produced, CV measurements were received on 

sensor fabricated with PTTC + 5000 ng/ml CA-125 antigen incubated for 30 minutes. 

Interference measurements in the absence and presence of 5000 ng/ml CA-125 antigen were 

taken in PBS + dopamine (0.1 mM), PBS + uric acid (2.5 mM), PBS + glucose (4.7 mM),  PBS 

+ ascorbic acid (0.1 mM),  arginin (0.1 mM)+PBS (pH: 7.4), D-L valin(0.1 mM)+PBS (pH: 

7.4), glutamin (0.1 mM)+PBS (pH: 7.4), glycin (0.1 mM)+PBS (pH: 7.4), histidine (0.1 

mM)+PBS (pH: 7.4), l-asparagin (0.1 mM)+PBS (pH: 7.4), L-methionin (0.1 mM)+PBS (pH: 

7.4), leucin (0.1 mM)+PBS (pH: 7.4), prolin (0.1 mM)+PBS (pH: 7.4), serin (0.1 mM)+PBS 

(pH: 7.4 solutions at room temperature (scan rate = 50 mV s-1).



Moreover, the isotonic serum measurements with 0.9% isotonic sodium chloride and the 

artificial serum measurements with a solution prepared to contain PBS (pH: 7.4), urea (2.5 

mM), (D+)-glucose (4.7 mM), MgCI2 (1.6 mM), KCI (4.5 mM), and CaCI2 (5 mM) were taken 

via CV and EIS at room temperature.

3. Results and Discussion 

5-(2-phenylbenzo[b]thiophen-3-yl) thiophene-2-
carbaldehyde (PTTC)

S

S
O

Figure 1: Synthesis of PTTC.

The compound PTTC as an antibody was used to detect CA-125 antigen with electrochemical 

methods via CV, EIS, and DPV. CV measurements were taken on prepared electrodes 

modified-GCE, modified-GCE + Nafion, modified-GCE + Nafion + CA-125, modified-GCE 

+ Nafion + PTTC, modified-GCE + Nafion + PTTC + 5000 ng/ml CA-125 (30 min. incubation 

time) and in PBS (pH: 7.4) + 5.0 mM Fe(CN)6
3-/4- solution at room temperature (scan rate = 50 

mV s-1). The results of these CV measurements are given in Figure 2. The peaks of CA-125 

antigen in forward scan with 0.124 mA cm-2 current density at 0.17 V and in backward scan 

with 0.117 mA cm-2 current density at -0.18 V were obtained (Fig. 2). These values obtained 

are higher than the values stated in the studies on CA-125 antigen in the literature [15-23]. 
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Figure 2: Cyclic voltammograms for modified GCE, Nafion+GCE, Nafion+PTTC+GCE, 
Nafion+CA-125+GCE and GCE+Nafion+PTTC+CA-125 and at 5000 ng/ml CA-125 antigen 
concentration. 

To examine the concentration effect of CA-125 antigen used in the designed sensor, CV 

measurements were obtained by incubating amounts of CA-125 antigen varying among 1-

50000 ng/ml for 30 min on the GCE + Nafion + PTTC electrode in PBS (pH: 7.4) + 5 mM 

Fe(CN)6
3-/4- at room temperature (scan rate = 50 mV s-1). CV results are given in Figure 3a-b. 

It could be note that the current density gradually increases from 1 ng/ml (0.01 mA cm-2) to 

5000 ng/ml (0.122 mA cm-2) and the current density decreases after 5000 ng/ml. The results 

showed that the sensor obtained by incubating 5000 ng/ml CA-125 antigen for 30 minutes had 

the maximum current density.
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Figure 3: Cyclic voltammograms received on sensor electrode produced with 3 L PTTC 
antibody + (a) 1-50 ng/ml and (b) 50-50000 ng/ml CA-125 antigen and at 30 min incubation 
time



After the best CA-125 antigen concentration was found as 5000 ng/ml, optimum incubation 

time was researched for the construction sensor over prepared electrodes by varying time 

between 10-70 min. The CV measurements taken are given in Figure 4a. The results showed 

that the best incubation time for the sensor was 30 minutes. To research the effect of scan rate 

on the electrooxidation of CA-125 antigen, CV measurements were taken on electrode prepared 

with modified-GCE + Nafion + 3 L PTTC + 5000 ng/ml CA-125 antigen through 30 min 

incubation time, and these results are given Figure 4b. It was observed that as the scan rate 

increased, the current density increased. This phenomenon may be explained sensing reaction 

is controlled via diffusion.
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Figure 4: Cyclic voltammograms a) received on sensor electrode produced with 3 L PTTC 
antibody+5000 ng/ml CA-125 antigen at varying incubation times of 10-70 min in PBS (pH: 
7.4) + 5.0 mM Fe(CN)6

3-/4- (scan rate=50 mV s-1), and b) received on sensor electrode produced 
with 3 L PTTC antibody+5000 ng/ml CA-125 antigen at 30 min incubation time in PBS (pH: 
7.4) + 5.0 mM Fe(CN)6

3-/4- at room temperature (scan rate=5-1000 mV s-1).

Sensitivity of the sensor electrode fabricated with 3 L PTTC antibody + various concentration 

of CA125 antigen at 30 min incubation time was determined by the DPV method in PBS. The 

DPV curves for these electrodes in 0.1 M PBS at varying concentrations (0.01-1000 ng/mL CA 

125 antigen) are depicted in Figure 5a. The calibration plot of the DPV peak current densities 

versus concentration of CA125 antigen is also illustrated in Figure 5b. One can note that the 

DPV current densities versus CA125 antigen concentration plot exhibited a linear relationship 

within the range of 0.01-100 ng/mL. This linear range value is higher than those reported in 

the literature (Table 1). 

Limit of Blank (LOB) and lowest detection limit (LOD) for CA125 antigen measured at 

acceptable statistical certainty and lowest concentration of analyte called the limit of 

quantification (LOQ) determined at acceptable sensitivity were calculated for the sensor 



electrode fabricated with 3 L PTTC antibody. To determine LOB, 10 blank electrode 

responses without analyte were taken and then the standard deviation of 10 blank electrode 

responses and these blank DPV measurements are presented in Figure 6. LOB, LOD, and LOQ 

were found as 0.0086, 0.0096, and 0.0288 ng/mL at (S/N=3), respectively. It is clear that LOD 

of this sensor is lower than the sensors reported in literature (Table 1). 
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Figure 4: Differential pulse voltammetry measurements received on sensor electrode produced 
with 3 L PTTC antibody+0.01-1000 ng/ml CA-125 antigen at room temperature and at 30 
min incubation time in PBS + 5.0 mM Fe(CN)6

3-/4-.
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Figure 5: Differential pulse voltammetry measurements received to measure 10 blank 
electrode responses without analite on sensor electrode produced with 3 L PTTC antibody in 
PBS + 5.0 mM Fe(CN)6

3-/4-  at room temperature.

Electrochemical impedance spectroscopy is a widely used measurement method in fields such 

as materials science, electrochemistry, sensors, biology and medicine. Impedance measurement 

could be defined as the measure of resistance against the current of an alternating current [49]. 

Nyquist plots obtained from EIS measurements occurs linear parts corresponding to a 

controlled diffusion process and a semi-circular area that provides information about load 

transfer. To obtain information about the electrooxidation process of CA-125, EIS 

measurements were taken on the sensor produced with Nafion+3 L PTTC+5000 ng/ml CA-

125 at varying volts among -0.6-0.6 V in PBS (pH: 7.4) + Fe(CN)6
3-/4- solution. Sensor was 

produced by incubating 5000 ng/ml of CA-125 antigen for 30 min over GCE + Nafion + PTTC 

electrode. Nyquist plots obtained from EIS measurements are given in Figure 6. In Nyquist 

plots, the diameter of the semicircles is associated with the load transfer resistance (Rct), the 



larger the diameter, the larger the load transfer resistance, but the smaller the diameter, the 

lower the load transfer resistance [50]. Herein, it could be explained that when the diameter of 

the semicircle is large, CA-125 antigen electrooxidation is slow, but when the diameter of the 

semicircle is small, CA-125 antigen electrooxidation is fast. EIS measurements showed that 

the diameter of the semicircles was large at potentials between -0.6-0 V, but the diameter of 

the semi-circles was small at potentials between 0-0.6 V (Fig 5). The lowest charge transfer 

resistance level for the electrooxidation of CA-125 antigen was found as 0.2 V, and this result 

is compatible with CV and DPV results [20, 51-58] .
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Glucose, uric acid, dopamine, and ascorbic acid, arginine, D-L valin, glutamin, glycin,  

histidine, l-asparagin, L-methionin, leucin, prolin, serin could affect the diagnosis of CA-125 

antigen in the blood and urine samples. Thus interference of glucose, uric acid, dopamine, and 



ascorbic acid, arginine, D-L valin, glutamin, glycin,  histidine, l-asparagin, L-methionin, 

leucin, prolin, serin was investigated by CV and EIS methods.  These interference 

measurements were taken by CV and EIS at 0.2 V. CV and EIS measurements were performed 

over sensors fabricated that Nafion+3 L PTTC electrode, and Nafion+3 L PTTC+CA-125 

by incubating 5000 ng/ml CA-125 antigen for 30 min, respectively. Interference measurements 

were taken by CV and EIS measurements  in D-glucose (4.7 mM)+PBS (pH: 7.4), dopamine 

(0.1 mM)+PBS (pH: 7.4), uric acid (2.5 mM)+PBS (pH: 7.4), ascorbic acid (0.1 mM)+PBS 

(pH: 7.4), arginin (0.1 mM)+PBS (pH: 7.4), D-L valin(0.1 mM)+PBS (pH: 7.4), glutamin (0.1 

mM)+PBS (pH: 7.4), glycin (0.1 mM)+PBS (pH: 7.4), histidine (0.1 mM)+PBS (pH: 7.4), l-

asparagin (0.1 mM)+PBS (pH: 7.4), L-methionin (0.1 mM)+PBS (pH: 7.4), leucin (0.1 

mM)+PBS (pH: 7.4), prolin (0.1 mM)+PBS (pH: 7.4), serin (0.1 mM)+PBS (pH: 7.4) solutions 

at room temperature. CV and EIS measurements of D-glucose (4.7 mM)+PBS (pH: 7.4), 

dopamine (0.1 mM)+PBS (pH: 7.4), uric acid (2.5 mM)+PBS (pH: 7.4), ascorbic acid (0.1 

mM)+PBS (pH: 7.4) are given Figure S1 (a-d) and Figure S2 (a-d), respectively. On the other 

hand, EIS measurements for arginin (0.1 mM)+PBS (pH: 7.4), D-L valin(0.1 mM)+PBS (pH: 

7.4), glutamin (0.1 mM)+PBS (pH: 7.4), glycin (0.1 mM)+PBS (pH: 7.4), histidine (0.1 

mM)+PBS (pH: 7.4), l-asparagin (0.1 mM)+PBS (pH: 7.4), L-methionin (0.1 mM)+PBS (pH: 

7.4), leucin (0.1 mM)+PBS (pH: 7.4), prolin (0.1 mM)+PBS (pH: 7.4), serin (0.1 mM)+PBS 

(pH: 7.4) are given Figure S3 (a-j) The comparison of CV results given in Figure S1 (a-d) was 

examined with the anodic peak currents increase. The interference effect of uric acid was seen 

to be greater than ascorbic acid, dopamine, and D-glucose. Similarly, comparing the Nyquist 

plots given in Figure S2 (a-d) is in agreement with the results showing that the sensor incubated 

with CA-125 antigen had the lowest load transfer resistance. EIS measurements for the amino 

acids interference given Figure S3 revealed that components that may prevent the diagnosis of 

CA-125 in the blood samples could be ignored, and its promise has a good selectivity in the 



diagnosis of CA-125 antigen of sensor fabricated with PTTC+5000 ng/ml CA-125 antigen at 

30 min incubation time.

After determining the sensitivity, interference effects, LOD and LOQ values of the developed 

sensor, artificial serum, and isotonic serum measurements were taken. These result were 

presented in Figure 7. Salts contained in artificial serum and isotonic serum could affect 

antigen-antibody interactions in the sensor. Artificial serum and isotonic serum measurements 

were performed over developed sensor with PTTC+5000 ng/ml CA-125 antigen at 30 min 

incubation time, and these results were compared with obtained results in PBS (pH: 7.4) + 

Fe(CN)6
3-/4- via EIS at 0.2 V (Fig 7). Artificial serum was prepared by dissolving D-glucose 

(4.7 mM), urea (2.5 mM), KCl (4.5 mM), CaCl2 (5 mM), and MgCl2 (1.6 mM) salts in PBS 

(pH: 7.4), and 0.9% isotonic sodium chloride infusion water solution (sterile) was used as an 

isotonic serum (Fig. 7). Results reveal that EIS has similar behavior in the artificial and isotonic 

serum medium.  
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Figure 7: EIS measurements at 0.2 V for comparison with PBS, isotonic serum, and artificial 
serum on the fabricated sensor consisting of 30 ng/ml CA-125 antigen, 3 L PTTC antibody, 
and prepared at 30 min incubation time in PBS + 5.0 mM Fe(CN)6

3-/4- at room temperature.



4. Conclusions 

At present, PTTC benzothiophene derivative was synthesized to detect CA125 (MUC-16) 

level via electrochemical methods such as CV, DPV, and EIS.  In order to determine the 

electrochemical parameters affecting sensitivity of the sensor such as CA125 antigen 

concentration, PTTC loading, incubation time, and scan rate were examined. Results reveal 

that concentration vs maxium peak graph exhibited linear region at 0.01-100 ng/ml.  One can 

note that electrochemical immunosensor fabricated from the PTTC has a wide linear range and 

superior sensitivity, greater than the literature values reported in the literature. Furthermore 

LOD, and LOQ were found as 0.0096 ng/mL (LOD) and 0.0288 ng/mL ng/mL (LOQ) (S/N=3) 

respectively. LOD of this immunosensor is lower than the immunosensors reported in literature. 

Interference of D-glucose (4.7 mM), dopamine (0.1 mM),  uric acid (2.5 mM), ascorbic acid 

(0.1 mM),  arginin (0.1 mM),  D-L valin(0.1 mM), glutamin (0.1 mM),  glycin (0.1 mM),  

histidine (0.1 mM), l-asparagin (0.1 mM) L-methionin (0.1 mM), leucin (0.1 mM),  prolin (0.1 

mM),  serin (0.1 mM) were taken by CV and EIS. Interference results reveal that these potential 

interfering subtances preventing the diagnosis of CA-125 in the blood samples could be 

ignored. On the other hand, artificial serum and isotinic serum measurements results show that 

arc diamter for both of the measuremenst are similar and it was found that the artificial serum 

effect was higher than the isotonic serum. In conclusion, PTTC based GCE electrode is a 

promising electrode for CA125 antigen determination for the ovarium cancer and it has a 

potential to be used as an alternative for the diagnosis of ovarium cancer
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