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ABSTRACT
The present study aimed to measure the microstructure of the
TheraCal LC (Bisco Inc., Schaumburg, IL) and Calciplus LC (Imicryl,
Konya, Turkey) and to investigate the effect of excitation dura-
tions and different light sources on their ‘degree of conversion’
properties. Three excitation modes of the resinous pulp capping
materials were tested at 5, 10, and 20-s: light-emitting diode, and
near-infrared laser excitation at 532 and 785nm wavelengths.
Resinous materials and excitation durations factors were analyzed
with the two-way ANOVA test and Tukey Post Hoc tests
(a¼ 0.05). It is found that the near-infrared laser cannot polymer-
ize the samples and TheraCal LC had greater mean values than
Calciplus LC at 5, 10, and 20-s (p< 0.001, p¼ 0.011, and p¼ 0.062,
respectively). Energy-dispersive X-ray spectroscopy and X-ray pow-
der diffraction analysis were used to assess the calcium-silicate
content. Calcium-silicate phases were observed in TheraCal LC but
these phases did not exist in the Calciplus LC. TheraCal LC and
Calciplus LC have similarities in their conversion degree properties
with LED excitations at 20-s, however, the calcium-silicate content
measured in the experiments is not in agreement with the data
of the Calciplus LC declared by the manufacturer.

ARTICLE HISTORY
Received 22 April 2022
Revised 29 September 2022
Accepted 5 January 2023

KEYWORDS
Calcium-silicates; degree of
conversion; near-infrared
laser; polymerization; pulp
capping material

1. Introduction

Biocompatible materials are frequently used in the management of deep caries of vital
teeth [1]. For this purpose, hydraulic calcium silicate-based bioceramics are the first
option in the exposed pulp [2]. Also, resin-based bioceramics could be preferred
when the pulp is not exposed [1,2]. For resin-based biomaterials, calcium silicates are
physically embedded into the methacrylate-based media without crosslinking [3]. The
main strategy is aimed to enhance their stability and integration with restorative
materials whereas, cause to command the curing time [4]. The first representative of
the calcium-silicates-contained-resinous pulp capping material (RPC) is TheraCal LC
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(Bisco Inc., Schaumburg, IL). More specifically, the chemical composition of
TheraCal LC consists of type III Portland Cement (calcium silicate source), radiopaci-
fier agent, hydrophilic thickening agent, and bisphenol A-glycidyl methacrylate
(BisGMA)-based resin media [5,6].

Recently, a urethane dimethacrylate (UDMA)-based RPC representative named
‘Calciplus LC’ has been introduced [7]. The product has affixed Conformit�e
Europ€eenne (CE) marking, however, very limited data is accessible on it. Notably, the
literature-based content data seem not to overlap related to the manufacturer’s data.
More specifically, its calcium silicate or calcium hydroxide content that appeared in
the manufacture datasheet does not in agreement with a previous study (Please see
the manufacturer data in the Supplemental file S1) [7]. In addition, there is no litera-
ture-based information about the Calciplus LC content and characterization research
is not conducted for the RPC material.

Complete polymerization of a resin-based material is an ideal objective for the
clinical success of restorations [8]. The degree of carbon double bond conversion or
DC is related to the final mechanical properties of polymer-based materials where
higher molecular weight provides higher stability and hardness [9,10]. The high DC
corresponds to a resin-based material success since lower monomer–polymer conver-
sion relates to low mechanical properties and increased risk of releasing toxic sub-
stances (residual monomers) from the material [11,12]. DC of the resin-based
materials could be quite related to the adhesive type of failure between the dentin
and bonding agent, cohesive type of failure within the dentin or resin composite, or
some mixed type of failure modes [13]. Notably, increasing DC affects the hydropho-
bicity of the polymeric material which may reduce the wettability or adhesion ability
of resinous material with the dentin. Also, higher DC will tend to higher contraction
stresses [14]. Vice versa or relatively lower DC may increase the risk of incidence of
the above-mentioned failure modes of a resinous material [15,16]. Hence, minimal
polymerization shrinkage that is caused by cross-linking and polymerization should
generally be an antagonistic goal to obtaining optimum DC [14].

Very recently, the polymerization degrees of TheraCal LC and the novel TheraCal
PT (Bisco Inc., Schaumburg, IL) have been reported [17–19]. Yet, the polymerization
degree has not been assessed specifically for the Calciplus LC as a counterpart that
includes conflicting ingredients. The unique DC data is necessary to understand one
of the significant physicochemical characteristics of RPCs. Despite some concerns
available about the usage RPCs in direct pulp capping treatment [20–22], RPCs are
frequently used under restorative materials and in indirect pulp capping treatments
in day-to-day clinical practices [23]. For that reason, demonstrating the unknown
physicochemical parameters and researching controversial issues for the RPCs are
relevant.

A light excited from any source can transmit into the material or reflect from the
surface. Also, the transmitted light can attenuate through the bulk of the material
during the photoactivation of a material [24]. Hence, the visible light source at a
‘high energy level’ is used for the polymerization of light-curable dental materials in
clinical practice. NIR spectral region lies approximately in the 700–1100 nm wave-
length range [25]. The relatively high wavelength range of NIR spectra causes low

2 G. DIKMEN ET AL.

https://doi.org/10.1080/01694243.2023.2166385


energy transfer to the living tissues [25]. Accordingly, NIR laser applications are
increasing in healthcare due to minimizing the transferred energy on human tissues
[26]. To eliminate the high energy transfer-related drawbacks of ionizing radiation, a
diagnostic device in dentistry uses an NIR at 780–850 nm wavelength range to detect
non-cavitated proximal caries [27]. Also, photoinitiation, radical polymerization, and
proton generation have been shown with the NIR laser excitation [28,29]. Yet, the
NIR laser excitation effect on the polymerization of resin-based materials has not
been studied.

The present study is twofold. To eliminate the gaps in the literature, the aims of
the present study were to measure the microstructure of the samples and to investi-
gate the effect of excitation durations and different light sources on the ‘degree of
conversion’ properties of RPC materials. The null hypothesis of this study is no dif-
ference between LED and NIR laser in the conversion degree of TheraCal LC and
Calciplus LC.

2. Materials and methods

2.1. Materials and sample preparation

The information about the tested RPCs is given in Table 1. Each sample was prepared
using a couple of potassium bromide (KBr) plates for the Fourier-transform infrared
(FT-IR) spectroscopy experiments. The weight of each sample of FT-IR experiments
is 1.2mg. The samples were randomly divided into 10 subgroups according to the
excitation modes (n¼ 7):

� Uncured sample.
� LED-light excitation for 5 s (LED-05).
� LED-light excitation for 10 s (LED-10).
� LED-light excitation for 20 s (LED-20).
� NIR excitation at 532 nm wavelength for 5 s (NIR532nm-05).
� NIR excitation at 532 nm wavelength for 10 s (NIR532nm-10).
� NIR excitation at 532 nm wavelength for 20 s (NIR532nm-20).
� NIR excitation at 785 nm wavelength for 5 s (NIR785nm-05).
� NIR excitation at 785 nm wavelength for 10 s (NIR785nm-10).
� NIR excitation at 785 nm wavelength for 20 s (NIR785nm-20).

The LED curing unit has a 385–515 nm wavelength range at 900mW/cm2 (D-Lux;
DiaDent Group Int. Chungcheongbuk-do, Korea). The NIR laser has a 532–785 nm
wavelength range (InVia instrument, Renishaw plc., Wotton-under-Edge, UK). The
theoretical irradiances of NIR785nm and NIR532nm were at 100 and 1000mW/cm2,
respectively. Each curing source was placed at a 1mm distance from the sample sur-
face and then activated per subgroup. Polymerized samples were immediately trans-
ferred to the FT-IR experiments. The DC was assessed with FT-IR spectroscopy and
confirmed by Raman.

For the Raman, EDS, and XRD analysis, Teflon molds were used. A cylindrical
Teflon mold (0.3mm thickness, 7mm inner diameter) was slightly overfilled with
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the RPCs. To prevent oxygen inhibition, a Mylar strip was placed above the resin and
flattened (n¼ 3).

2.2. FT-IR spectroscopy investigation

Spectral changes were detected by FT-IR spectroscopy. For this purpose, Spectrum
two FT-IR Spectrometer with LiTaO3 detector (Perkin Elmer Inc., Waltham, MA,
USA) was used for recording spectral data with the potassium bromide (KBr) plate
method. The spectral range of each record was 4000–400 cm�1 with a spectral reso-
lution of 4 cm�1.

2.2.1. Theory/calculation
In the FT-IR spectral interpretation, the chemical shifts of aliphatic and aromatic CC
groups were observed at 1637 and 1608 cm�1, respectively. The degree of conversion
is calculated using the ratio of peak intensities of the aliphatic (C¼C) and aromatic
(C���C) CC groups. The following Equation (1) is employed for the calculation of
conversion degree:

Degree of conversion %ð Þ ¼ 1�
AbsðC¼CÞ�

AbsðC���CÞ
� �

polymerized

AbsðC¼CÞ=AbsðC���CÞ
� �

unpolymerized

0
BB@

1
CCA � 100 (1)

2.2.2. Data analysis
Statistical comparisons of DC were performed only for the LED groups. Resinous
materials and excitation durations factors were analyzed with the two-way ANOVA
test and Tukey Post Hoc tests (The Jamovi project (2021), Jamovi (Version 1.6)
(Computer Software). Retrieved from https://www.jamovi.org) (a¼ 0.05). Due to
polymerization did not occur, statistical analysis of NIR laser data was not made.

2.3. Raman spectroscopy investigation

Renishaw Raman instrument (Renishaw plc., Wotton-under-Edge, UK) was used for
the experiments. Following the placement of each sample, an infrared monomer spec-
trum was obtained using 32 scan resolution for samples. The CCD detector of the
spectrometer has a 1024� 256 pixel resolution. Each spectrum ranged from 400 to
4000 cm�1 with a resolution of 4 cm�1. The calibration of the wavenumber axis was
conducted by a silicon calibration wafer. Spectra were recorded with a single scan,
10 s exposure for each sample. The spectral data were post-processed using the Wire
software (Renishaw plc., Wotton-under-Edge, UK).

2.4. Microstructure analysis

Characterization of the chemical content was assessed together with EDS and XRD
analysis. In EDS analysis, UltimExtreme instrument (Oxford Instruments, High
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Wycombe, UK) coupled with a field emission scanning electron microscope (Hitachi
Regulus 8,230; Hitachi High-Tech Co., Tokyo, Japan) was used. Teflon cylindrical
molds were prepared for sample standardization for the EDS analysis. The dimension
of each mold is 2mm in diameter and 1mm in thickness. A Mylar strip was placed
on the bottom of the mold to allow specimen filling. Before the EDS examination,
each mold filled with the sample was attached to metal stubs using carbon tape with-
out coating application. The EDS data of the uncured sample was the reference.
Accordingly, carbon, oxygen, fluorine, calcium, silicon, zirconium, barium, and ytter-
bium were assigned for analysis. Trace elements of specimens were not considered.

Due to the inhomogeneous nature of these RPC biomaterials, the data were col-
lected from the central region of the image surface (area selection tool, at 1000�) at
high-magnification mode. Each EDS data was obtained from a single reading for each
sample (n¼ 3). In total, the average of the triplet EDS spectra of each LED subgroup
was considered for the calculation of the elemental percentage. The accelerating volt-
age was 10.0 kV at high-vacuum pressure.

In XRD analysis, three specimens per group were calcined at 500 �C for 5 h (n¼ 3,
per each RPC). The rest of the specimens were not calcined (n¼ 3, per each RPC).
Empyrean diffractometer (Malvern Panalytical B. V., Malvern, UK) equipped with the
PIXcel1D detector (Malvern Panalytical B. V., Malvern, UK) was used in the analysis.
The diffractometer emits copper alpha radiation at 40mA and 45 kV, and the detector
rotates between 5� and 90� at 2h. Each step corresponds to 0.016� with a 10 s scan
rate. Each diffractogram was matched with the ‘International Centre for Diffraction
Database’ (ICDD) using HighScorePlus v4.6a software (Malvern Panalytical B.V.,
Malvern, UK).

3. Results

3.1. Interpretation of spectral data

Vibrational modes of FT-IR spectra are listed in Table 2. In FT-IR spectra, the peaks
observed at 1608 and 1637 cm�1 belong to CC groups for TheraCal and Calciplus.
Regarding increased the duration of LED excitation, a significant decrease in their
intensity was gradually observed in the vibration band belonging to the CC with no

Table 2. Vibrational modes of Fourier-transform infrared spectra of resin-based pulp capping
materials.
Group Characteristic vibrational modes Observed wavenumbers ranges (cm�1) Interpretation

TheraCal LC CC 1608 and 1637ab Strong
CO 1718a Strong
CH3 2873a Strong
CH2 2949a Strong

Calciplus LC CC 1608 and 1637a Weak
CO 1720a Strong
CH3 2957a Weak
CH2 2974a Strong

aShows ‘the intensities of these bands changed with light emitted diode excitation with no chemical shift’; bshows
‘the intensities of the aromatic and aliphatic CC vibrational modes slightly changed with the near-infrared laser exci-
tation at 532 nm wavelength’.
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chemical shift for both RPC-LED groups. In TheraCal-LED groups, CO, CH3, and
CH2 vibrational modes were seen at 1718, 2873, and 2949 cm�1, respectively. The
intensities of these bands changed with LED excitation with no chemical shift. The
intensities of the aromatic and aliphatic CC vibrational modes slightly changed with
the TheraCal-NIR532nm excitation with no chemical shift (Figure 1). There was no
significant chemical shift or intensity transition observed in the vibration motions
belonging to the identified groups with NIR785nm excitation. In Calciplus-LED groups,
CO, CH3, and CH2 vibrational modes were seen at 1720, 2957, and 2974 cm�1,
respectively. The intensities of these bands changed with LED excitation with no
chemical shift. There was no significant chemical shift or intensity transition observed
in the vibration motions belonging to the identified groups with NIR excitation
(Figure 2).

In Raman spectral interpretations, vibrational modes of aliphatic and aromatic CC
groups were seen at 1637 and 1608 cm�1, respectively. These findings were in agree-
ment with the FT-IR results (Figure 3).

Figure 1. Representative FT-IR spectra of TheraCal. Th shows TheraCal LC. LED shows light-emitting
diode excitation. NIR532nm shows near-infrared laser excitation at 532 nm wavelength, NIR785nm
shows near-infrared laser excitation at 785 nm wavelength.

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY 7



3.2. Degree of conversion findings

The research data that support the findings of this study are provided by Dikmen
et al. [30]. The presentation of the statistical analysis of the DC% is summarized in
Figure 4. Significant differences were revealed among the time subgroups curing
times for both RPC biomaterials (p< 0.001). These differences were gradually
decreased with increased curing time. TheraCal had the highest DC% means at 5, 10,
and 20 s (p< 0.001, p¼ 0.011, and p¼ 0.062, respectively). According to the manufac-
turers’ data, 20 s light curing is recommended in both RPC biomaterials. The DC%
means of TheraCal-LED-20 and Calciplus-PC-LED-20 were 78.5% and 75.0%,
respectively (p¼ 0.062).

DC was calculated between 11% and 16% for TheraCal-NIR532nm samples at 20 s
excitation, however, the authors considered that the low conversion degree had no
clinical significance, therefore, statistical analysis was not made for NIR laser samples.

3.3. Calcium-silicate content

A noteworthy observation was the inconsistent EDS data between TheraCal and
Calciplus regarding their calcium and silicon contents. In the descriptive EDS data,

Figure 2. Representative FT-IR spectra of Calciplus. Ca shows Calciplus LC. LED shows light-emit-
ting diode excitation. NIR532nm shows near-infrared laser excitation at 532 nm wavelength, NIR785nm
shows near-infrared laser excitation at 785 nm wavelength.

8 G. DIKMEN ET AL.



the calcium content was not detected in the Calciplus whereas, the silicon content of
Calciplus was relatively lower than TheraCal. EDS revealed that the percentage of cal-
cium and silicon content increased with the prolonged photo-activation in TheraCal
(Figure 5).

In XRD analysis, halo peaks were revealed between 5 and 15� in the uncalcined
specimens due to the existence of the organic phases. Tricalcium silicate
(76.7 ± 0.4%; ICDD: 00-055-0740; monoclinic), dicalcium silicate (6.8 ± 0.3%; ICDD:
98-024-5079; monoclinic), and barium-zirconium-oxide phase (16.6 ± 0.7%; ICDD:
04-006-0973; cubic) were detected in TheraCal. Whereas, ytterbium fluoride
(77.4 ± 1.1%; ICDD: 04-010-148; orthorhombic), calcium fluoride (11.7 ± 0.5%;
ICDD: 01-088-2301; cubic), silicon dioxide (9.6 ± 0.5%; ICDD: 01-076-0912; tetrag-
onal) and zirconium oxide (1.3%±0.1; ICDD: 04-016-2969; monoclinic) were
detected in Calciplus (Figure 6).

Figure 3. Representative Raman spectra of TheraCal-LED and Calciplus-LED. Th shows TheraCal, Ca
shows Calciplus. LED shows light-emitting diode excitation at 5 s (LED-05), 10 s (LED-10), and 20 s
(LED-20).

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY 9



4. Discussion

The increasing conversion degree of each sample with increasing excitation duration
could be explained by the positive relationship between the amount of transferred
energy increased over time, as expected. Despite the manufacturers having recom-
mended a 20-s curing duration, the results indicated that the polymerization did not
complete. Therefore, the null hypothesis was rejected. Previous studies demonstrated
that the unpolymerized monomers or resin parts could be toxic to pulp cells, while
polymerized resins presented no toxic effects [11,12]. In addition, RPC materials have
been shown to be more cytotoxic to murine odontoblasts cells and human dental
pulp stem cells than resin-free calcium silicates (e.g. powder form of calcium silicates)
[31,32]. Giraud et al. [21,22] have discussed the drawbacks of the RPC with the
chemical content of the materials. Accordingly, it has been stated that the resinous
structure freezing the calcium-silicate content in the resin matrix led to insufficient
interaction with the pulp–dentin complex, and therefore, RPCs should not be placed
in direct contact with the pulp tissue [21,22]. The presence of residual uncured or
unconverted monomer demonstrated in the present study was in agreement with the
cytotoxicity of RPC materials shown in the previous studies [21,22,31,32].

The final physical properties of a resin-based material may influence clinical suc-
cess [33]. Accordingly, an inferior monomer–polymer conversion can correlate to
decreased mechanical stability and increased toxicity, ultimately leading to postopera-
tive failures in the short term [34–36]. The presented incomplete polymerization find-
ings at 20 s were in agreement with the reported DC values of flowable dental

Figure 4. The bar graph representing mean and standard deviation percentages of degree of con-
version of TheraCal and Calciplus. Th shows TheraCal, Ca shows Calciplus. LED shows light-emitting
diode excitation at 5 s (LED-05), 10 s (LED-10), and 20 s (LED-20).
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composites (57.9–68.9%) [37]. The differences between our findings and the previous
studies could be attributed to the light unit source or resin-based material differences.

The XRD findings confirmed the EDS findings corresponding to each RPC. The
presence of calcium-silicate content and phase composition of TheraCal were in
agreement with the previous reports [20,38]. However, in the findings, the manufac-
turer’s declared calcium silicate or calcium hydroxide content was not detected in the
analyses of Calciplus. Because of these findings, the authors figured that it is a matter
of debate whether the group representative is an RPC material or not. These content
results, which contradict information from manufacturer-based data, indicate that
‘Calciplus LC’ is not calcium hydroxide or calcium-silicate-based pulp capping mater-
ial. The mechanism of action of calcium silicates is similar to that of calcium hydrox-
ides due to calcium hydroxide is a by-product of the hydration reaction of calcium
silicates with water [39]. Calcium silicates and calcium hydroxide produce dentin
bridge formations by modulating the inflammatory response of pulp tissue, due to
their ability to stimulate bone morphogenetic protein production and therefore rep-
arative dentinogenesis [40,41]. Consequently, it has been proven that calcium silicate-
or calcium hydroxide-based reactions, which has been demonstrated their positive
effects on the pulp–dentin complex, will not be presented by the Calciplus LC.
Besides, the detected inorganic compositional differences might have contributed to

Figure 5. Mean EDS data of TheraCal and Calciplus.
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the variety in DC findings between the materials. DC of a resin-based material is
influenced by not only the resin matrix type but also the type, shape, and size of the
inorganic filler [42].

The NIR laser excitation was also studied on TheraCal and Calciplus LC.
However, polymerization did not occur in any samples after NIR785nm excitations.
The intensities of the aromatic and aliphatic CC vibrational modes slightly changed
with NIR532nm laser excitation in TheraCal. The NIR laser at 532 nm wavelength has
a higher amount of energy compared to the 785 nm wavelength. The observed find-
ings in the NIR laser at the 532 nm wavelength may explain by the transferred high
amount of energy to the BisGMA media.

To assess the DC of resinous materials, various thickness designs could be used in
the sample preparation. In agreement with a previous study [43], to achieve thinner
samples, KBr plates were used under pressure in the present study. The literature-
based depth of cure value of TheraCal LC is 1.7mm [4]. The range of distances
between the curing light and the specimens was reported to be set at 1mm [19],
2mm [17], and 3mm [18] in the previous studies. FT-IR experiments were conducted
with coupled micro-attenuated total reflectance crystal (ATR) technique in the previ-
ous studies [17–19]. Furthermore, the presented theoretical calculations of DC% have
variety in the previous studies [17,18]. Hence, FT-IR experimental methodology, the-
oretical calculation, curing unit type, or curing distance could affect the variety of the
DC% results of TheraCal LC. It is challenging to directly correlate in vitro conditions
to clinical situations. Especially, the simulation of environmental conditions cannot
be possible such as various cavity depths. In the study, all curing modes were

Figure 6. Representative diffractogram of resin-based pulp capping materials. Th shows TheraCal,
Ca shows Calciplus. LED shows light-emitting diode excitation at 20 s (LED-20).
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performed at a 1mm distance from the sample surface. Thus, this could be consid-
ered a limitation of this in vitro study. A light source transfers a relatively low
amount of energy to TheraCal and Calciplus LC in deep cavities compared to a 1mm
distance. This could be contributing to a decrease in the DC value of TheraCal and
Calciplus LC.

Light-curable RPCs have the significant benefits of ease of placement, command
curing, excellent physical strength, less solubility, and reduced heavy metal release
[23]. The hydrophilic polymer matrix of the light-curable RPCs allows the release of
calcium and hydroxide ions [23]. Despite RPCs being promising materials for pulp
capping treatments, further studies need to understand their actual characterization
and functions. Further studies are needed to investigate changes in the mechanical
properties of the TheraCal correlating with the DC. Also, further studies are needed
to obtain preclinical and clinical data on the Calciplus LC.

Within the limitations of this current study, it was concluded that biocompatible
NIR laser excitation at 532 nor 785 nm cannot be utilized for the polymerization of
resin-based materials. Despite the resin-based pulp capping materials present good
conversion degree properties after LED excitations at 20-s, uncured monomers, which
may contribute to their toxicity, can exist. The calcium-silicate content measured in
the experiments is not in agreement with the data of the Calciplus LC declared by
the manufacturer.
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