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A B S T R A C T

The activated carbon (AC), graphene (G), reduced graphene oxide (rGO), carbon nanotube (CNT) supported
CdTe photocatalysts at (50–50) atomic molar are synthesized by the sodium borohydride (SBH) method and
characterized by the XRD, Micro-Raman, TEM-EDS, XPS, and TPx (TPR, TPO, and TPD) analyses. The CV,
CA, and EIS electrochemical analyses are performed to investigate the catalytic activities of catalysts for pho-
tocatalytic glucose electrooxidation. Characterization analyses reveal that their electronic structures and sur-
face properties change when carbon materials are doped with metal. The photocatalytic glucose
electrooxidation results indicate that the 0.1 % CdTe(50–50)/CNT catalyst exhibited better photocatalytic
activity, stability, and resistance than other catalysts both at dark (1.9 mA/cm2) and under UV illumination
(2.57 mA/cm2). Therefore, the CNT-supported CdTe catalyst can be said a promising catalyst for direct glucose
fuel cells.
1. Introduction

Energy is important for people to sustain their lives for heating,
transportation, and many similar reasons. The world's energy needs
are met from fossil fuels (natural gas, oil, coal) that harm nature [1].
When these fossil fuels burn, they release toxic gases such as CO2,
SOx, and NOx, causing harm to nature and the environment. In addi-
tion, it takes many years to renewable themselves. Therefore, research-
ers have shown great interest in alternative energy sources in recent
years. Alternative energy sources include solar energy, wind energy,
biomass energy, fuel cells. Fuel cells (FCs), a clean energy source
and high-capacity energy systems, have attracted the interest of the
scientific world to meet the world's energy needs as one of the most
significant energy sources of the future. FCs are a sustainable and effi-
cient energy source for a clean future that converts chemical energy
directly into electrical energy [2–4]. Photoelectrochemical (PEC) cells
have been recognized as one of the promising systems for solving the
energy problem, thanks to which they make use of sunlight and pro-
duce electricity or chemical fuels [5,6]. Photocatalytic fuel cells (PFCs)
that semiconductor photoanode, cathode, and electrolyte-containing
such as methanol [7], ethanol [8], glucose (C6H12O6) [9–12] are up-
and-coming devices that could handle the energy needs and environ-
mental pollution utilizing sunlight as energy input. Glucose is a high
energy density (4.43 kWh/kg), non-toxic, flammable, and non-volatile,
potential hydrogen carrier and is the most abundant simple sugar in
nature [13]. A glucose molecule can produce 24 electrons and yield
−2870 kJ/mol of energy via the complete oxidation to CO2. However,
glucose is a very stable molecule, it is difficult to break down and oxi-
dize of CAH bond, so more research is needed. It is worth noting that it
consists mostly of gluconic acid and a two-electron generating system,
as demonstrated in the following chemical reaction in all studies to
date [14]:

Anode: C6H12O6 + 2OH– → C6H12O7 (gluconic acid) + H2O + 2e-

(4).
Cathode: ½O2 + H2O + 2e- → 2OH– (5).
Overall: C6H12O6 + ½O2 → C6H12O7 + 12H2O (6).
Recently, the catalytic oxidation of glucose, which is utilized as a

renewable energy source to meet the energy demand, was reported
on metal-based carbon catalysts [2,15]. Caglar et al reported that they
studied the photocatalytic glucose electrooxidation of C-TNT (9.1 mA/
cm2), Cd/TiO2 (6 mA/cm2), and CdSe/TiO2 (7.2 mA/cm2) catalysts
[16–18]. Devadoss et al [19] reported glucose sensing and biohydro-
gen production in the direct photo-electrocatalytic oxidation of glu-
cose with the Cu2O-TiO2 photocatalyst. They emphasized that
. Kivrak).
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Cu2O–TiO2 photoelectrodes could be used in biosensors and simulta-
neous biohydrogen production from direct photoelectrocatalytic oxi-
dation of glucose. Yan et al [20] reported the glucose sensor and
photoelectrochemical oxidation in an electrode modified with anatase
TiO2. They emphasized that it is important to develop applications of
TiO2-based catalysts in analytical chemistry and electrochemistry to
improve the selectivity of the glucose sensor or the power density of
fuel cells. Hamad et al [21] reported that they obtained 0.52 mA/
cm2 specific activity using an organic anode catalyst for glucose elec-
trooxidation. In addition, PdIn/CNT (0.98 mA/cm2) [22], PdAu/C
(3 mA/cm2) [23], NiO-TiO2-ZrO2/SO4

2- (5.19 mA/cm2) [24], Cu/
Cu2O/TNT (6.40 mA/cm2) [25] materials were studied on glucose
electrooxidation in literature.

Moreover, it is known that metal loading on the support plays an
important role in determining the catalytic activity of catalysts in pho-
tocatalytic fuel cells. The metal loading on the support and the amount
of metal affecting the thickness of the fuel cell catalyst layer also affect
the cell performance. Literature studies have investigated the close
relationship between metal loading, particle size, and catalyst layer
thickness on the support and their effect on fuel cell performance. High
metal loading on the support material reduces the interparticle dis-
tance, which affects the catalytic activity. Furthermore, the catalyst
causes a decrease in surface area, thus leading to a decrease in catalytic
activity [26,27].

Recently, the catalytic performance of catalysts has been examined
in many fields such as water splitting [28], fuel cells [29–31], hydro-
gen storage [32], supercapacitors [33], solar energy [34], lithium-ion
batteries [35] in the literature. However, photoanode catalysts devel-
oped for photocatalytic electrooxidation studies are not available in
the literature except for a few studies. At present, AC, G, rGO, CNT
supported CdTe photocatalysts were synthesized at (50:50) atomic
molar by utilizing the SBH method. The XRD, Micro-Raman, TEM,
XPS, and TPx (TPR, TPO, and TPD) analyses were used to examine
the structure of catalysts. The CV, CA, and EIS analyses were realized
to investigate the catalytic activity of photocatalytic glucose electroox-
idation at dark and under UV illumination.
Fig. 1. XRD patterns of 0.1% CdTe(50–50)/AC, G, rGO, CNT catalysts.
2. Experimental

2.1. Synthesis of supported-CdTe catalysts

All chemicals were bought from Sigma-Aldrich. CdTe(50–50) cata-
lysts were synthesized with different support materials (AC, G, rGO,
CNT) by using the SBH method. The Cd loading was adjusted to
0.1 % by the weight. Firstly, the appropriate amounts of Cd precursor
and Te precursor were distributed under sonication with DI water in a
beaker for 0.1 % CdTe(50–50)/CNT catalyst. After the metal precur-
sors were homogeneously dispersed in DI water, CNT was added and
mixed for about 120 min with both ultrasonic bath and mixer. After-
ward, the reducing agent SBH was added dropwise into the solution.
After mixing in both ultrasonic bath and mixer for 1 h, it was thor-
oughly washed with DI water and filtered. Finally, it was left to dry
at 85 °C for overnight. All catalysts were synthesized under the same
synthesis conditions.
Fig. 2. Micro-Raman spectra of 0.1% CdTe(50–50)/AC, G, rGO, CNT
catalysts.
2.2. Characterization of supported-CdTe catalysts

The X-ray Diffraction patterns (Empyrean (PANalytical) diffrac-
tometer) were performed to examine crystal structures of 0.1 %
CdTe(50–50)/AC, G, rGO, CNT catalysts. TEM analysis of 0.1 %
CdTe(50–50)/CNT catalyst was obtained using the Hitachi HighTech
HT7700 device at 120 kV accelerating voltage and a maximum resolu-
tion of 0.204 nm. The elemental composition and oxidation state of the
0.1 % CdTe(50–50)/CNT catalyst were examined using XPS analysis
(Specs-Flex) with a CCD detector (Kα (Al): 1486.7 eV). Micromeritics
2

Chemisorb 2750 equipment was used to examine H2-TPR, O2-TPO,
and NH3-TPD analyses with an automated system attached by Chemi-
Soft TPx software.
2.3. Photo-electrochemical measurements

The CHI 660E potentiostat is a device used for electrochemical
analysis. The CV, CA, and EIS analyses with this device were used to
examine the catalytic activity, stability, and resistance of the catalysts,
respectively. All analyses were performed in a three-electrode system
with a reference electrode (Ag/AgCl), working electrode (Titanium
metal), and counter electrode (Pt wire) with a scan rate of 100 mV/s
at a potential range −0.65 V ∼ 0.65 V in 1 M KOH and 1 M
KOH + 0.5 M Glucose solution. The catalyst slurry was obtained from
mixing CdTe(50–50)/AC, G, rGO, CNT catalysts and Nafion and it was
transferred over titanium metal having 0.5 cm2 area. The CV, CA, and
EIS analyses were used to investigate catalytic activities of photocat-
alytic glucose electrooxidation at dark and under UV illumination.
The UV lamp used for illumination had a power of 366 nm (long wave-
length) and 6 W in a cabinet connected to the UVP device.
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3. Results and discussion

3.1. 1. Physical characterization

XRD analysis was realized to determine the crystal phase compo-
nents of the catalysts. XRD patterns of 0.1 % CdTe(50–50) catalysts
supported with different support materials were given in Fig. 1. The
diffraction peaks of AC, G, rGO, CNT supported-CdTe(50–50) catalysts
can be attributed as C (002) corresponding about 2θ = 24.8°, 22.8°,
24.5°, 25.6°, respectively. Furthermore, the diffraction peaks at
approximately 43° corresponded to C (100) (JCPDS: 96-101-1061)
[36]. The wide diffraction peak of graphene at 2θ = 11.5° can be
assigned to graphene oxide [37]. The diffraction peaks at 53°, 66.9°,
and 78.4° (2θ) for the 0.1 % CdTe(50–50)/CNT catalyst can be attrib-
Fig. 3. TEM images of 0.1 % CdTe(50–50)/CNT catalyst (a) 10 nm, (b) 20 nm, (c) 5
analysis.

3

uted to (400), (311), and (511) for cubic CdTe (JCPDS: 15–0770),
respectively [38].

Micro-Raman spectroscopy was used to examine the structure,
defect levels, and crystal behavior of the support materials AC, G,
rGO, and CNT. Fig. 2 presents the Micro-Raman spectroscopy of sup-
ported-CdTe(50–50) catalysts. As can be shown from Fig. 2, all ana-
lyzed carbon materials had the characteristic D (∼1350 cm−1) and G
(∼1582 cm−1) bands found in most other carbon materials [39]. The
G band is common to all carbon structures with sp2. However, the D
band reveals the existence of disorder in the structure of carbon mate-
rials such as graphene [40]. The ratio (ID/IG) of the intensity of the D-
Raman peak (ID) and the G-Raman peak (IG) can be used to measure
the level of disorder in carbon materials. The calculated ID/IG ratios
of CdTe/AC, CdTe/G, CdTe/rGO, and CdTe/CNT catalysts are 1.02,
0 nm, (d) 100 nm, (e) 200 nm, (f) 10 nm particle size distribution, and (g) EDS
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0.99, 1.05, and 1.11, respectively. The high ID/IG ratio of the CdTe/
CNT catalyst compared to the others clearly shows the defective nature
of CdTe/CNT due to its porous structure [41].

The TEM-EDS images of 0.1 % CdTe(50–50)/CNT catalyst were
given in Fig. 3. It could be observed from Fig. 3(a-e), the particles
didn't form agglomeration and were generally homogeneously dis-
persed. Fig. 3f demonstrates the histogram and particle size of the
10 nm image. Particle size was found as about 3.7 nm. Many studies
reported that it was emphasized that the activity increased with the
reduction of particle size [42,43]. EDS results revealed the presence
of Cd, Te, and C particles.

Fig. 4(a-d) displays the possible chemical states of Cd and Te in the
0.1 % CdTe(50–50)/CNT catalyst defined by using XPS analysis. In all
XPS results, peak positions were determined relative to C 1s at a bind-
ing energy of 284.6 eV. The C 1s of two different chemical shifts com-
ponents with the binding energy of 284.8 and 288.2 eV could be
attributed to CAC and O-C@O [44]. In addition, the binding energy
of 531.1 eV in the O 1s spectrum corresponds to the C@O bond
[45]. The binding energy at 405.5 eV and 412.4 eV of Cd 3d
(Fig. 4c) have two peaks at 3d5/2 and 3d3/2, which shows the possible
formation of CdO which are consistent with the values noticed for
Cd2+ [46,47]. Fig. 4d demonstrates the binding energies of Te 3d.
The binding energies at 577 eV and 585 eV corresponded to Te
3d5/2 and Te 3d3/2 at the Te–O bond formation peak from oxidation
of Te4+ species [48]. Furthermore, two weak peaks at 572 eV and
581 eV in the Cd-Te bond indicate that the CdTe surface is composed
of CdTeOx and CdTe [49].

The TPR, TPO, and TPD analyses of CdTe(50–50)/CNT catalyst was
examined to investigate the behavior during the reduction, oxidation,
and desorption with hydrogen, oxygen, and ammonia, respectively.
These analyses were given in Fig. 5a-c. H2-TPR analysis can ensure
Fig. 4. XPS spectra of (a) C 1s, (b) O 1s, (c) Cd 3d,
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knowledge about the interplay between CdTe and CNT due to the
effects on the catalytic performance and properties of the catalyst
when CNT interacts with the metal [50]. TPR profiles show the reduc-
tion behavior of metal oxides of catalysts. The reduction peak of CNT
starts at approximately 500 °C. As emphasized in many studies, the
high peak at 667 °C can be attributed to CNT [51–53]. The reduction
peak formed at 380 °C can be assigned to the Cd-O or Te-O metal oxide
originating from CdTe. Metal oxide presence was observed in the TPR
analysis, as in the XPS analysis. The O2-TPO analysis of 0.1 % CdTe
(50–50)/CNT catalyst was demonstrated in Fig. 5b. TPO analysis is a
material characterization process that is heated to a specific tempera-
ture by passing an oxidizing gas mix including oxygen on the sample
and then can form oxidation in the thermal excitation that occurs. It
could be seen from Fig. 5b that 0.1 % CdTe(50–50)/CNT catalyst
has sharp peak TPO profiles at 586 °C. When it was doped with Cd
and Te metals, it was seen that the metals are oxidized before the sup-
port material and the oxidation temperature decreases due to the
metal support contact [54]. It has been reported in the literature that
the oxidation peak for CNT occurs between 600 and 700 °C [55]. TPD
analysis is utilized to define the adsorption sites on the sample with an
inert gas mixture of gases such as NH3 and CO2, which examines the
events happening on the surface of solid samples and whose tempera-
ture is modified via a temperature program. This analysis primarily
involves measuring the rate of adsorption from the sample surface at
low temperatures with a known gas and inert gas mixture, and the rate
of desorption as the temperature increases [56]. The NH3-TPD curves
of 0.1 % CdTe(50–50)/CNT catalyst was illustrated in Fig. 5c. TPD
curves change the acidic state of the sample as a weak acid, medium
acid, and strong acid as the temperature increases [57,58]. It could
be observed from Fig. 5c that the NH3 desorption profile of the
0.1 %CdTe(50–50)/CNT catalyst offers two different desorption peaks.
(e) Te 3d for 0.1 % CdTe(50–50)/CNT catalyst.



Fig. 5. H2-TPR a), O2-TPO b), and NH3-TPD c) profiles of CdTe(50–50)/CNT catalyst.
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These peaks were observed at 52 °C assigned to weak acid sites and the
other NH3 desorption peak at high temperature 652 °C originating
from strong acid sites. Since NH4+ ions fixed to Brønsted acid sites
are more unstable than the NH3 molecular bond at Lewis acid sites,
it can be predicted that the desorption peak at low temperature (52 °
C) removes NH4+ ions bound to Brønsted acid sites. The desorption
peak obtained at a higher temperature (652 °C) is related to the NH3

molecule originating from Lewis acid sites [59].

4. 2. Electrochemical measurements of supported-CdTe catalysts

The CV, CA, and EIS analyses were used to examine electrochemi-
cal properties towards photocatalytic glucose electrooxidation of AC,
G, GO-NH2, rGO, and CNT supported-CdTe catalysts. These analyses
were performed to both dark and under UV illumination to measure
the catalytic activity, stability, and resistance of the catalysts in 1 M
KOH + 0.5 M glucose solution. Fig. 6(a-c) shows the glucose elec-
trooxidation taken without UV illumination of catalysts. The electro-
chemical behaviors of supported-CdTe catalysts were performed by
CV analysis at between −0.65 and 0.65 V potential a scan rate of
100 mV/s. Although glucose has a high energy density, it is a difficult
fuel to break down. Therefore, the catalysts were evaluated over the
total current because oxidation peaks did not occur in glucose elec-
trooxidation measurements. It could be observed from Fig. 6a and b
that the 0.1 % CdTe(50–50)/CNT catalyst exhibited the best catalytic
activity compared to the other catalysts. Fig. 6c indicates a comparison
of 0.1 % CdTe(50–50)/CNT catalyst with 1 M KOH and 1 M
KOH + 0.5 M glucose. The difference occurring in the total current
is the catalytic activity originating from glucose. Moreover, the analy-
ses of these catalysts under UV illumination are given in Fig. 7a-d. The
5

0.1 % CdTe(50–50)/CNT catalyst exhibited better catalytic activity
with the specific activity of 2.57 mA/cm2 under UV illumination com-
pared to other catalysts and dark (1.9 mA/cm2). Fig. 7c indicates CV
analyses under UV illumination of 0.1 % Cd/CNT, 0.1 % Te/CNT,
and 0.1 % CdTe(50–50)/CNT catalysts. The 0.1 % CdTe(50–50)/
CNT catalyst displayed higher photocatalytic activity under UV illumi-
nation compared to 0.1 % Cd/CNT (1.89 mA/cm2) and 0.1 % Te/CNT
(0.94 mA/cm2) catalysts. It can be thought that the reason why 0.1 %
CdTe(50–50)/CNT catalyst has higher catalytic activity compared to
0.1 % Cd/CNT and 0.1 % Te/CNT catalysts provides much better activ-
ity due to the synergistic effects provided by the alloy nanostructure
and higher tolerance against poisoning effect [29,60]. The stability
of the 0.1 % CdTe(50–50)/CNT catalyst was examined during 30
cycles by CV analysis (Fig. 7d). It was observed that although there
was a rapid decrease during the first 10 cycles, afterward it gradually
stabilized.

CA analysis was performed to measure the stability and poison
resistance of CdTe(50–50)/AC, G, rGO, CNT catalysts. Fig. 8(a-d) indi-
cates the CA curves of catalysts. CA analysis of 0.1 % CdTe(50–50)/
CNT catalyst were performed at different potentials (0.1 V, 0.3, and
0.6 V) under UV illumination (Fig. 8a). CA analysis at 0.6 V potential
exhibited the best resistance and stability. After 1000 s, 0.1 % CdTe
(50–50)/CNT catalyst was better activity and stability compared to
other catalysts under UV illumination at 0.6 V potential (Fig. 8b). It
could be seen from Fig. 8c that the 0.1 % CdTe(50–50)/CNT catalyst
taken under UV illumination was more stable than received in the
dark. As in the CV results, 0.1 % CdTe(50–50)/CNT catalyst exhibited
the best activity and stability compared to the dark and other catalysts.

Fig. 9(a-c) presents the Nyquist plots obtained from the EIS analysis
to examine the electrocatalytic resistance of the 0.1 % CdTe(50–50)/



Fig. 6. Cyclic voltammograms of 0.1 % CdTe(50–50)/AC, G, GO-NH2, rGO, CNT catalysts in (a) 1 M KOH, (b) 1 M KOH + 0.5 M C6H12O6, and (c) both solution
comparison of CdTe(50–50)/CNT catalyst at 100 mV/s scan rate.
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AC, G, rGO, CNT catalysts. These plots are usually known as semicir-
cles, where the electrocatalytic resistance increases as the diameter
of the circle decrease [61,62]. The charge transfer resistance (Rct) is
associated with the diameter of the semicircle because as the diameter
decreases, Rct decreases, and so the catalytic activity increases [63].
Fig. 9a demonstrates the Nyquist plots of the 0.1 % CdTe(50–50)/
CNT taken under UV illumination in different potentials (0.1 V,
0.3 V, and 0.6 V). As seen in Fig. 9a, the Nyquist plot taken at the
potential of 0.6 V exhibited the best photocatalytic activity. It could
be clearly seen from Fig. 9b that the Rct can be listed as follows;
0.1 % CdTe(50–50)/G > 0.1 % CdTe(50–50)/rGO > 0.1 % CdTe
(50–50)/AC > 0.1 % CdTe(50–50)/CNT. The 0.1 % CdTe(50–50)/
CNT catalyst has the highest carrier transfer performance because it
has the lowest semicircular shape and charge transfer resistance com-
pared to other catalysts. Furthermore, the carrier transfer performance
was higher as the Rct (161.8 Ω) value under UV illumination was lower
compared to dark (414.2 Ω) (Fig. 9c).

5. Conclusion

The sodium borohydride reduction (SBH) method was used to pre-
pare activated carbon (AC), graphene (G), reduced graphene oxide,
carbon nanotube-supported CdTe catalyst. The XRD, Micro-Raman,
TEM, XPS, and TPx (TPR, TPO, and TPD) analyses were realized to
characterize these catalysts. XRD results revealed that carbon materi-
als were formed and cubic CdTe structures were formed. According
6

to the Micro-Raman results, the high level of ID/IG for CdTe/CNT,
which indicates the disorder level in carbon materials, indicates that
the CNT is defective due to its porous structure. TEM-EDS results
demonstrated that CNT and CdTe metal particles were formed. In addi-
tion, it was observed that CdTe particles had a particle size of 3.7 nm
and were homogeneously dispersed. XPS analysis illustrated that the
electronic state and crystal structure of the catalyst have changed.
TPR, TPO, and TPD analyses presented positive or negative shifts in
the reduction, oxidation, and adsorption–desorption peaks of CNT
when the temperature increased when doped with metal, indicating
the presence of metal. The CV, CA, and EIS analyses were performed
to the activity, stability, and resistance for photocatalytic glucose elec-
trooxidation measurements of 0.1 % CdTe/AC, G, rGO, CNT catalysts
in the dark and under UV illumination, respectively. The 0.1 % CdTe
(50–50)/CNT catalyst under UV illumination displayed the best photo-
catalytic activity with a specific activity of 2.57 mA/cm2 than both the
dark (1.9 mA/cm2) and other catalysts. Furthermore, it indicated the
best stability and resistance for photocatalytic glucose electrooxidation
by CA and EIS analyses under UV illumination as in the CV analysis. It
was observed that 0.1 % CdTe(50–50)/CNT catalyst under UV illumi-
nation had a faster electron transfer rate and higher catalytic activity
during photocatalytic glucose electrooxidation with the best stability
and lowest Rct (161.8 Ω) value compared to dark (414.2 Ω). The
0.1 % CdTe(50–50)/CNT catalyst showed that it would be an impor-
tant catalyst for photocatalytic fuel cells with its low metal content
when compared to the literature.



Fig. 7. Cyclic voltammograms of (a) 0.1 % CdTe(50–50)/AC, G, rGO, CNT catalysts under UV illumination, (b) dark and UV illumination comparison of CdTe
(50–50)/CNT catalyst, (c) the comparison of 0.1 % Cd/CNT, 0.1 % Te/CNT, and 0.1 % CdTe(50–50)/CNT catalysts under UV illumination, and (d) stability of
0.1 % CdTe(50–50)/CNT catalyst under UV illumination at 100 mV/s scan rate in 1 M KOH + 0.5 M C6H12O6 solution.

Fig. 8. CA curves of (a) 0.1 % CdTe(50–50)/CNT under UV illumination at 0.1 V, 0.3 V, and 0.6 V potentials, (b) 0.1 % CdTe(50–50)/AC, G, rGO, CNT catalysts under UV
illumination at 0.6 V, (c) 0.1 % CdTe(50–50)/CNT dark and under UV illumination at 0.6 V, (d) specific activities after 1000 s in 1 M KOH + 0.5 M C6H12O6 solution.
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Fig. 9. Nyquist plots of (a) 0.1 % CdTe(50–50)/CNT in 0.1 V, 0.3 V, and 0.6 V potentials (under UV illumination), (b) 0.1 % CdTe/AC, G, rGO, CNT catalysts at
0.6 V (under UV illumination), (c) 0.1 % CdTe(50–50)/CNT catalyst both at dark and under UV illumination at 0.6 V in 1 M KOH + 0.5 M C6H12O6 solution.
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