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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• 5-(2-phenylbenzo[b]thiophen-3-yl) 
furan-2-carbaldehyde (PTFC) is 
employed as antibody to detect CA125 
antigen. 

• Electrochemical results reveal that PTFC 
is a promising antibody for CA 125 
antigen. 

• Sensor has fairly wide linear range as 
0.01–100 ng mL− 1 and 100–1000 ng 
mL− 1  
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A B S T R A C T   

Herein, an electrochemical sensor based 5-(2-phenylbenzo[b]thiophen-3-yl)furan-2-carbaldehyde (PTFC) was 
developed for the detection of cancer antigen 125 (CA125). Measurements were obtained via cyclic voltammetry 
(CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV), and square wave 
voltammetry (SWV) techniques to investigate features of the electrochemical sensor such as concentration effect 
of CA125, incubation time, scan rate, limit of quantification (LOQ), limit of detection (LOD), and interference 
effect of structures found in serum. The sensor was found to have a fairly wide linear range as 0.01–100 ng mL− 1 

and 100–1000 ng mL− 1. LOQ and LOD values were determined as 0.024015 ng mL− 1 and 0.008005 ng mL− 1 (S/ 
N = 3), respectively. These results showed that the PTFC-based electrode could be a promising electrode for the 
detection of CA125.   
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1. Introduction 

Cancer is a disease caused by the transformation of cells that become 
abnormal and proliferate excessively. These deregulated cells sometimes 
end up forming a mass called a malignant tumor. Cancer cells tend to 
invade nearby tissues and break away from the original tumor. They 
then migrate through the blood vessels and lymphatic vessels to form 
another tumor. Ovarian cancer (OC) is one of the deadliest diseases see 
in women worldwide, and one of the cancer type that is difficult to di-
agnose early due to the absence of symptoms in the early stages and the 
lack of screening strategies on the market. Ovarian cancer usually occurs 
as a complex mass in the pelvis of the ovaries. It has different behaviors 
at molecular, cellular, and clinical levels. In advanced stages, metastases 
can rub on to the lung and liver via blood vessels or to nodes in the renal 
hilum via lymphatics [1–4]. If early detection systems can be developed, 
OC can be treated with platinum-based chemotherapy or surgery [5–7]. 

Tumor markers are molecules that may be produced as a response by 
the body either in cancer presence or in conditions such as inflamma-
tion. These biomarkers can also be released by tumors of cancers. These 
are very important proteins that can be an indicator of disease stages 
according to levels inside serum. Developing cost-effective, reliable, 
monitoring strategies, and strong detections for cancer is crucial, espe-
cially now because of the high death rates, high recurrence rates, and 
prevalence of the disease. They are used in diagnosis, follow-up detec-
tion of recurrence, and evaluation of cancer stages [8–12]. Tumor 
markers can be traced by measuring them in tissue or serum for early 
diagnosis of cancer [13–17]. Cancer antigen 125 (CA125) is the only 

marker used among tumor markers to trace ovarian cancer. CA125 is a 
glycoprotein greater than 200 kDa, and the normal value of CA125 in 
human blood is between 0 and 35 U mL− 1 [18–20]. CA125 antigen could 
found in most serosal fluids due to secreted from serosal epithelial cells. 
In the presence of ovarian cancer, CA125 level increases in the blood, 
while the level of CA125 in the blood may increase also in diseases such 
as heart failure obstruction, abdominal surgery, peritoneal infection, 
and liver cirrhosis [21–26]. The organic based sensor elements may be 
functionalized with biospecific probe organic molecules. They increase 
the biospecificity of target protein markers detection. Benzothiophene 
derivatives including aldehyde functional groups allow to conduct the 
target proteins in sample. Hence, organic based biosensors improved the 
following advantages: (i) highly sensitive of target proteins, (ii) rapid 
analysis of target proteins, and (iii) lower cost for detection procedure 
[27,28]. 

Recently, various methods such as fluorescence [29–31], liquid 
phase immunoassay [32], colorimetric immunoassay [18,33], optical 
biosensors [34], and electrochemical sensor [35–37] have been 
employed to accurately and more sensitively trace the level of CA125 in 
serum. Due to the fact that electrochemical sensors have superior fea-
tures such as appropriate cost, simple design, specificity, simple use, 
miniaturization, and easy transport, studies on electrochemical sensors 
have been increased in recent years [38–41]. To enhance sensitivities 
and accuracy of the electrochemical sensors to follow-up CA125 level in 
serum medium, micro-sensor chips were used and studied on the ma-
terials as Au-VBG/BDD electrode [42–44], MPA/AuNPs@SiO2/QD/-
mAb [45], Ag NPs-GQDs [46], g-C3N4 [47], and Cys-AuNPs/ERGO 
probes [48]. In addition, Ravalli et al. developed a graphite 
electrode-based CA125 immunosensor modified with gold nano-
particles. They reported that this sensor showed a linear variation in 
CA125 antigen concentrations among 0–100 U mL− 1, and the detection 
limit was also estimated as 6.7 U mL− 1 [49]. In another study, Chen et al. 
indicated that Co(bpy)3

3+ structure was initially connected on 
MWCNTs-N film and then modified with nano-Au and anti-CA125 
structures on Co(bpy)3

3+/MWCNTs-N film, respectively. It was re-
ported that the developed sensor had high sensitivity consisting of a 
detection limit of 0.36 U mL− 1 and had two linear ranges as 1–30 U 
mL− 1 and 30–150 U mL− 1 [50]. In the same way, Tang et al. reported 
that thionine− horseradish peroxidase (TH-HRP) composite was pre-
pared for the detection of CA125 in serum and anti-CA125 was attached 
to its surface. As a result, immunosensor had a detection limit of 0.1 U 
mL− 1 and a wide working range among 0.1–450 U mL− 1 [51]. Torati 
et al. reported that it was developed an immunosensor based on gold 
nanostructures and that sensor exhibited a linear range of 10–100 U 
mL− 1 and a low detection limit of 5.5 U mL− 1 [52]. 

In this study, we developed an organic electrochemical sensor that 
had a high selectivity to detect CA125 in serum medium by using a 
benzothiophene core. Initially, 5-(2-phenylbenzo[b]thiophen-3-yl) 
furan-2-carbaldehyde (PTFC) structure was synthesized, and PTFC 
structure was characterized by 13C NMR and 1H NMR, LC-MS/MS, SEM, 
and FT-IR. Finally, measurements were performed CV, EIS, DPV, and 
SWV techniques over electrodes prepared with PTFC at room 
temperature. 

2. Materials and methods 

At present, PTFC was synthesized, characterized, and employed as 
CA125 electrochemical sensor by modifying on GCE electrode. The 
necessary materials and equipments were given in the support file S1; 
synthesis method and characterization details were presented in S.2, the 
Surface properties of PTFC materials were characterized by scan-
ning electron microscopy. Finally, measurements were performed CV, 
EIS, DPV, and SWV techniques over electrodes prepared with PTFC at 
room temperature. Fabrication of the electrochemical sensor was given 
S3. The details of electrochemical measurements were explained at S.4. 

Fig. 1. SEM images of (a) PTFC and (b) Nafion modified PTFC at 500 μm, insert 
shows 5 μm resolution. 
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3. Results and discussion 

Synthesis procedure and 13C NMR and 1H NMR results of PTFC were 
presented in S2. 13C NMR and 1H NMR results revealed that these ma-
terials were successfully prepared. Furthermore, the surface properties 
of PTFC materials were characterized by scanning electron microscopy. 
The Nafion modified electrode surface SEM images were also taken ın 
order to understand the effect of the Nafion modification on the PTFC. 
SEM images were given in Fig. 1. From the images it is clear that there is 
no considerable difference in the surface structure of organic materials. 

An electrochemical sensor was developed with PTFC structure for 
detection CA125 antigen of the OC in serum medium. All measurements 
taken over this sensor were performed via CV, EIS, DPV, and SWV 
techniques. Firstly, measurements were received by CV technique over 
GCE, GCE + Nafion (N), GCE + N + CA125, GCE + N + PTFC, and GCE 
+ N + PTFC + CA125 electrodes. Results of these measurements were 
given in Fig. 2. The GCE + N + CA125 and the GCE + N + PTFC +
CA125 electrodes were prepared at room temperature by incubating of 
1000 ng mL− 1 CA125 amount for 30 min. The current values of GCE and 
GCE + N + PTFC electrodes with GCE + N and GCE + N + CA125 
electrodes were close to each other (Fig. 2). In addition, forward and 
backward peaks were not observed in peaks of these electrodes. GCE +
N + PTFC + CA125 electrode revealed the best performance with values 
forward peaks 0.146 mA cm− 2 (146.0 μA cm− 2) at 0.22 V and backward 

Fig. 2. CV results for GCE, GCE + N, GCE + N + PTFC, GCE + N + CA125, and 
GCE + N + PTFC + CA125 electrodes at 1000 ng mL− 1 CA125 in pH: 7.4 
PBS+5 mM Fe(CN)6

3/4- (scan rate = 50 mV s− 1 and room temperature). 

Fig. 3. CV results that taken at room temperature in pH: 7.4 PBS+5 mM Fe 
(CN)6

3− /4- solution for GCE + N + PTFC + CA125 electrodes prepared at 30 min 
incubation time with varying values concentrations among 1–50000 ng 
mL− 1 CA125. 

Fig. 4. CV results for a) GCE + N + PTFC + CA125 electrode prepared with 1000 ng/mL CA125 at varying incubation times of 10–70 min (scan rate: 50 mV s− 1); b) 
GCE +N +PTFC +CA125 electrode prepared with 1000 ng mL− 1 at 30 min incubation time at between 5 and 1000 mV s− 1 scan rates in pH: 7.4 PBS+5 mM Fe 
(CN)6

3− /4- at room temperature. 

Fig. 5. GCE + N + PTFC + CA125 electrode prepared with 1000 ng mL− 1 at 30 
min incubation time at between 50 mV s− 1 scan rates at varying pHs PBS+5 
mM Fe(CN)6

3− /4- at room temperature. 
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peak 0.157 mA cm− 2 (157.0 μA cm− 2) at − 0.26 V (Fig. 2). This phe-
nomenon could be attributed to the fact that CA125 binds to the PTFC 
structure in the sensor and an electrochemical event occurs between the 
two structures. 

To research, the effect of CA125 concentration on the electro-
chemical sensor was prepared electrodes varying among 1–50000 ng 
mL− 1 CA125 amounts. These electrodes were obtained by incubating 
CA125 for 30 min over GCE + N + PTFC electrodes at room tempera-
ture. Measurements were taken in pH: 7.4 PBS+5 mM Fe(CN)6

3− /4- so-
lution via CV and the results are shown in Fig. 3 (scan rate = 50 mV s− 1). 
A gradual increase among 1 ng mL− 1 (0.042 mA cm− 2 at 0.15 V)-1000 
ng mL− 1 (0.071 mA cm− 2 at 0.15 V) and a gradual increase among 1000 
ng mL− 1-50,000 ng mL− 1 (0.045 mA cm− 2 at 0.17 V) were observed in 

the results. 1000 ng mL− 1 was determined the best concentration value 
of CA125 for the electrochemical sensor. 

To investigate the effect of scan rate over electrooxidation process 
among PTFC structure with CA125 and to determine the best incubation 
time of the electrochemical sensor were taken measurements via CV in 
pH: 7.4 PBS+5 mM Fe(CN)6

3− /4- solution. These results were shown in 
Fig. 4. Initially, measurements to research incubation time were per-
formed over GCE + N + PTFC + CA125 electrodes prepare by incubating 
1000 ng mL− 1 CA125 varying times among 10–70 min (Fig. 4a). As a 
result, optimum electrode time preparation was found 30 min. After-
ward, it was obtained measurements at different scan rates among 
5–1000 mV s− 1 over GCE + N + PTFC + CA125 electrodes prepared by 
incubating 1000 ng mL− 1 CA125 for 30 min (Fig. 4b). In the measure-
ments, it was observed that the current density increased as the scan rate 
increased from 5 to 1000 mV/s, which indicated that a diffusion- 
controlled reaction took place in the electrochemical sensor. 

The effect of pH was performed at three different pH values on GCE 
+ N + PTFC + CA125 electrode prepared with 1000 ng/mL CA125 at 30 
min incubation time. CV measurements were given in Fig. 5. Results 
revealed that pH did not have significant effect on electrooxidation 
activity: 

DPV measurements were taken on the electrodes in 0.1 M PBS at 
varying concentrations (0.01–5000 ng/mL CA 125 antigen), shown in 
Fig. 6a–b. DPV results revealed while concentration of CA125 antigen 
increases from 0.01 ng/mL to 1000 ng/mL, the DPV current density 
increase. When 1000 ng/mL is reached, DPV current densities starts to 
decrease slightly. The calibration plot of the DPV peak current densities 
versus concentration of CA125 antigen is also illustrated in Fig. 6c. One 
can note that the DPV current densities versus CA125 antigen concen-
tration plot exhibited a linear relationship within the range of 0.01–50 
ng/mL and 100–1000 ng/mL, revealing that there are two linear re-
gions. These linear range vales are higher than reported in literature 
given in Table 1. 

On the other hand, by using SWV technique, we obtain the linear 
range value from SWV. Similar to DPV measurements, SWV measure-
ments were performed on the electrodes in 0.1 M PBS at varying con-
centrations (0.01–5000 ng/mL CA 125 antigen). The SWV results were 
presented in Fig. 7. The SWV results obtained at 0.01–5000 ng/mL CA 

Fig. 6. DPV results received at room temperature in pH: 7.4 PBS+5 mM Fe(CN)6
3− /4- solution on GCE + N + PTFC + CA125 electrodes produced with varying rates 

between a) 0.01–100 ng mL− 1 CA125, b) 100–5000 ng mL− 1 CA125 for 30 min incubation time, and c) maximum current against concentration values. 

Table 1 
Properties of electrochemical sensors used to detect CA125 compiled from 
literature.  

Tumor 
marker 

sensor LOD or LOQ Linear range Ref. 

CA125 Anti-CA125/GHM/ 
PTH/GCE 

1.3 U/mL 4.5–36.5 U/ 
mL 

[53] 

CA125 CA125/CANs/CA- 
GCE 

1.73 U/mL 0–30 U/mL [54] 

CA125 MWCNT-ZnO 0.00113 U/mL 0.001 U/mL-1 
kU/mL 

[55] 

CA125 AuNP-PB-PtNP- 
PANI hydrogel 

4.4 mU/mL 0.01–5000 U/ 
mL 

[56] 

CA125 Au/PDDA/PTCA/ 
CNTs/redox- 
probe@D-Ab 

3.3 pg/mL 0.012–12 ng/ 
mL 

[57] 

CA125 Au–Thi-CPEs 1.8 U/mL 10–30 U/mL [58] 
CA125 CNF-based 1.8 U/mL 2–75 U/mL [59] 
CA125 CNTs-based 0.9 U/mL 3–200 U/mL [60] 
CA125 GCE þ N þ PTFC 0.008005 ng 

mL− 1 (LOD) 
0.01–50 ng/ 
mL 

In this 
study 

DPV 100–1000 
ng/mL 

CA125 GCE þ N þ PTFC 0.024015 ng 
mL− 1 (LOQ) 

1–50 ng/mL In this 
study SWV 100–700 ng/ 

mL  
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125 antigen was presented Fig. 7a. It clear that when CA125 antigen 
concentration increased, the SWV current density increased. In Fig. 7b, 
SWV current densities were plotted and given and insets in Fig. 7-b 
shows the linear regions. Two linear region was obtained fro, SWV. 
These linear regions are 0.01–50 ng/mL and 100–700 ng/mL, respec-
tively. These linear regions obtained form SWV are in agreements ones 
from the obtained DPV. 

Limit of blank (LOB), lowest detection limit (LOD), and limit of 
quantification (LOQ), which is known as the lowest concentration value, 
values at acceptable sensitivity for the designed electrochemical sensor 
were calculated with GCE + N + PTFC electrode and GCE + N + PTFC +
CA125 electrodes. Limit of Blank (LoB), Limit of Detection (LoD), and 
Limit of Quantitation (LoQ) are terms used to describe the smallest 
concentration of a measurand that can be reliably measured by an 
analytical procedure. LoB is the highest apparent analyte concentration 
expected to be found when replicates of a blank sample containing no 
analyte are tested. LoD is the lowest analyte concentration likely to be 
reliably distinguished from the LoB and at which detection is feasible. 
LoD is determined by utilising both the measured LoB and test replicates 
of a sample known to contain a low concentration of analyte. To define 
the LOB value, 10 blank measurements were taken on the GCE + N +
PTFC electrode without CA125, and then the standard deviation was 

determined. DPV, 10 blank measurements, and concentration values vs. 
maximum currents were given in Fig. 8. LOQ, LOB, and LOD values were 
calculated by using following equations:  

LoB = meanblank +1.645(SDblank)                                                    2.1  

LoD = LoB + 1.645(SD low concentration sample)                                      2.2  

LoQ = 3 LoQ (S/N = 3)                                                                  2.3 

LOQ, LOB, and LOD values were determined as 0.024015 ng mL− 1, 
0.007516 ng mL− 1, and 0.008005 ng mL− 1 (S/N = 3), respectively. It 
can be clearly seen that the LOD value found for this sensor is lower than 
the sensors noticed in the literature. 

EIS is a technique used widely by characterizing electrochemical 
systems. This technique is utilized widely in areas like medicine, elec-
trochemistry, and material science [37]. The Nyquist plots are obtained 
from EIS data. These plots are being in a semicircular providing infor-
mant about load transfer resistance in systems [37,40,61–63]. In addi-
tion, EIS data could be correlated to microstructural properties, rates of 
reaction and diffusion [62]. In this study, EIS measurements were per-
formed with GCE + N + PTFC + CA125 electrodes prepared by incu-
bating 1000 ng mL− 1 (30 min) at varying potentials between − 0.6 V and 

Fig. 7. SWV results received at room temperature in pH: 7.4 PBS+5 mM Fe(CN)6
3− /4- solution on GCE + N + PTFC + CA125 electrodes produced with varying rates 

between a) 0.01–5000 ng mL− 1 CA125 for 30 min incubation time, and b) maximum current against concentration values. 
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0.6 V in pH: 7.4 PBS+5 mM Fe(CN)6
3− /4- solution at room temperature. 

These results were shown in Fig. 9. Herein, it can be explained that a low 
charge transfer resistance when the semicircles are small in diameter, 
and a large charge transfer resistance when the semicircles are large in 
diameter throughout electrooxidation among PTFC structure and CA125 
in the electrochemical sensor. It watched that close to each other 
semicircle diameters of all electrodes in measurements performed 
among − 0.6 V–0.6 V, and the lowest load transfer resistance was ac-
quired over 0.4 potential. These results are suitable with DPV and CV 
results. 

According to CV, DPV and EIS results, the following electrooxidation 
mechanism was proposed; 

Step 1: PTFC + CA125 antigen [PTFC … CA125 antigen] 2.4 
Step 2: [PTFC … CA125 antigen] + OH− → PTFC + H2O + in-
termediates + e− 2.5 

After DPV, EIS, and CV results over electrooxidation sensor, it was 
performed interference measurements for structures that find in blood 
samples like ascorbic acid, uric acid, glucose, and dopamine, which can 
affect the electrooxidation operation among PTFC and CA125. In addi-
tion, these measurements are determined the sensitivity of the electro-
chemical sensor. EIS measurements 0.4 potential and CV measurements 
were received over GCE + N + PTFC electrodes and GCE + N + PTFC +
CA125 electrodes that prepared with 1000 ng mL− 1 CA125 (30 min 
incubation time) in 0.1 mM ascorbic acid + pH: 7.4 PBS, 2.5 mM uric 
acid + pH: 7.4 PBS, 0.1 mM dopamine + pH: 7.4 PBS, and 4.7 mM D- 
glucose + pH: 7.4 PBS solutions. It was given CV results in Fig. S1 and 
EIS results in Fig. S3. The forward peaks that be electrooxidation peak at 
0.2 potential were not observed in all CV measurements performed over 
GCE + N + PTFC electrodes. Moreover, glucose, ascorbic acid, and 
dopamine showed similarly and lower interference effects, while uric 
acid showed a higher interference effect from these (Fig. S1). However, 
it can be said that not affect electrooxidation operation among CA125 
and PTFC of uric acid (Fig. S1a). The Nyquist plots obtained from EIS 
measurements taken over electrodes without CA125 were observed 
similar results. The load transfer resistance (Rct) in measurements per-
formed without CA125 was the highest, in the presence of CA125 was 
found that be also low (Fig. S2). All these results prove that not affect 
electrooxidation operation that is among PTFC and CA125 in the elec-
trochemical sensor of structures such as glucose, ascorbic acid, uric acid, 
and dopamine that find in blood samples. Furthermore, these results 
show also that the PTFC structure has a high sensitivity to CA125. 

Finally, to investigate the effect of salts that find in blood samples on 
the electrochemical sensor was taken measurements in mediums of 
artificial and isotonic serum. These measurements were performed via 
CV and EIS (0.4 V) techniques over GCE + N + PTFC + CA125 electrodes 
prepared at room temperature with 1000 ng mL− 1 CA125 (30 min in-
cubation time). It is given results obtained in Fig. S3. As seen in Fig. S3a, 
it was found to exhibit a high interference-effect of artificial serum ac-
cording to isotonic serum. However, it is clearly seen that not affect the 
electrooxidation process among PTFC and CA125 in the electrochemical 
sensor. EIS results at 0.4 potential of artificial and isotonic serum were 
exhibited also by each other very close load transfer resistances 
(Fig. S3b). 

Stability studies were performed on PTFC by DPV. Taking 100 cycles 
on GCE + N + PTFC + CA125 electrodes prepared with 1000 ng mL− 1 

CA125 for 30 min incubation time. The maximum current values for 1st, 
20th, 50th, 75th, 100th current values were given in Table 2. Results 
show that relative current values from 1st to 100th cycle decrease form 
100% to 93.26%. Relative deviation values were given also. These 
values are below the 10%. This value could be acceptable for stability 
measurements. These values show that results are repeatable and elec-
trode surface does not change after sensor measurements. To obtain 
repeatability results, 10 different GCE + N + PTFC + CA125 electrodes 
were prepared with 1000 ng mL− 1 CA125 for 30 min incubation time 

Fig. 8. DPV results received at room temperature in pH: 7.4 PBS+5 mM Fe 
(CN)6

3− /4- solution on GCE + N + PTFC electrodes prepared without CA125 
antigen (10 blank electrodes). 

Fig. 9. Nyquist Plots obtained that EIS measurements received at room tem-
perature in pH: 7.4 PBS+5 mM Fe(CN)6

3− /4- solution at varying potentials 
among − 0.6 and 0.6 V on GCE + N + PTFC + CA125 electrodes prepared with 
1000 ng mL− 1 CA125 for 30 min incubation time. 

Table 2 
Stability and repeatability results.  

Measurement Cycle number Max DPV 
current 

Relative Current 
(%) 

RSD 
(%) 

stability 1st 0.0490 100 0 
20th 0.0486 99.2 0.8 
50th 0.0475 96.2 3.8 
75th 0.0468 95.5 4.5 
100th 0.0457 93.26 6.7  

repeatability Electrode 
number 

Max DPV 
current 

RSD (%)  

1st 0.0490 0  
2nd 0.0483 1.43  
5th 0.0453 7.55  
10th 0.0519 − 5.91   
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and repeatability measurements were done on these electrodes by DPV. 
Maximum DPV values were recorded for these 10 electrodes. For 1st, 
2nd, 5th, 7th, 10th electrodes maximum DPV values were given in 
Table 2. For the repeatability measurements RSD values show that re-
sults are repeatable. 

4. Conclusions 

PTFC structure that is benzothiophene derivative was synthesized for 
determining CA125 antigen in serum medium with electrochemical 
methods like CV, EIS, and DPV. Important parameters affecting elec-
trochemical sensor sensitivity like concentration value of CA125, incu-
bation time, scan rate, interference effect were examined via these 
methods. It was observed two different linear areas for the electro-
chemical sensor prepared including the first linear area 0.01–50 ng 
mL− 1 and the second linear area 100–1000 ng mL− 1. Moreover, LOQ and 
LOD values for the sensor were obtained as 0.024015 ng mL− 1 and 
0.008005 ng mL− 1 (S/N = 3), respectively. One can be clearly seen that 
the sensor prepared with PTFC has a wide linear area and higher 
sensitivity than the linear range values reported in the literature. In 
addition, the LOD value was also lower than the LOD values reported in 
the literature. Artificial serum and interference results disclose that a 
promising electrode for the detection of CA125. According to all elec-
trochemical results obtained, the PTFC structure can clearly see that a 
promising antibody due to its high sensitivity in detecting CA125 used in 
the diagnosis of OC and superior properties such as acceptable LOD and 
LOQ values. 
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